- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Aquino‐López, M A (1)
-
Blaum, K. (1)
-
Chen, R. J. (1)
-
Deng, H. Y. (1)
-
Fu, C Y (1)
-
Fu, C. Y. (1)
-
Ge, W. W. (1)
-
He, J. J. (1)
-
Hou, S. Q. (1)
-
Huang, W. J. (1)
-
Jiao, H. Y. (1)
-
Li, H. F. (1)
-
Li, J. G. (1)
-
Li, K. A. (1)
-
Liao, T. (1)
-
Litvinov, S. A. (1)
-
Litvinov, Yu. A. (1)
-
Liu, M. L. (1)
-
Meisel, Z. (1)
-
Niu, Y. F. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Sea ice plays multiple important roles in regulating the global climate. Rapid sea ice loss in the Arctic has been documented over recent decades, yet our understanding of long‐term sea ice variability and its feedbacks remains limited by a lack of quantitative sea ice reconstructions. The sea ice diatom‐derived biomarker has been combined with sterols produced by open‐water phytoplankton in the index as a sea ice proxy to achieve semi‐quantitative reconstructions. Here, we analyze a compilation of over 600 published core‐top measurements of paired with brassicasterol and/or dinosterol across (sub‐)Arctic oceans to calculate a newln() index that correlates nonlinearly with sea ice concentration. Leveraging sediment trap and sea ice observational studies, we develop a spatially varying Bayesian calibration (BaySIC) for ln() to account for its non‐stationary relationship with sea ice concentration and other environmental drivers (e.g., sea surface salinity). The model is fully invertible, allowing probabilistic forward modeling of the ln() index as well as inverse modeling of past sea ice concentration with bi‐directional uncertainty quantification.BaySICfacilitates direct proxy‐model comparisons and palaeoclimate data assimilation, providing the polar proxy constraints currently missing in climate model simulations and enabling, for the first time, fully quantitative Arctic sea ice reconstructions.more » « less
-
Zhou, X.; Wang, M.; Zhang, Y. H.; Litvinov, Yu. A.; Meisel, Z.; Blaum, K.; Zhou, X. H.; Hou, S. Q.; Li, K. A.; Xu, H. S.; et al (, Nature Physics)Abstract X-ray bursts are among the brightest stellar objects frequently observed in the sky by space-based telescopes. A type-I X-ray burst is understood as a violent thermonuclear explosion on the surface of a neutron star, accreting matter from a companion star in a binary system. The bursts are powered by a nuclear reaction sequence known as the rapid proton capture process (rp process), which involves hundreds of exotic neutron-deficient nuclides. At so-called waiting-point nuclides, the process stalls until a slower β + decay enables a bypass. One of the handful of rp process waiting-point nuclides is 64 Ge, which plays a decisive role in matter flow and therefore the produced X-ray flux. Here we report precision measurements of the masses of 63 Ge, 64,65 As and 66,67 Se—the relevant nuclear masses around the waiting-point 64 Ge—and use them as inputs for X-ray burst model calculations. We obtain the X-ray burst light curve to constrain the neutron-star compactness, and suggest that the distance to the X-ray burster GS 1826–24 needs to be increased by about 6.5% to match astronomical observations. The nucleosynthesis results affect the thermal structure of accreting neutron stars, which will subsequently modify the calculations of associated observables.more » « less
An official website of the United States government
